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EFFECTIVE VISCOSITY OF AN EMULSION IN A SURFACTANT SOLUTION 

A. Yu. Zubarev and Yu. V. Shilko UDC 539.41:541.182 

A surfactant affects the effective viscosity of an emulsion because of capil- 
lary phenomena in shear flow. The surfactant gives the emulsion non-Newton- 
Jan behavior. 

A surfactant affects emulsion rheology [i] and in particular increases the effective 
viscosity. The usual explanation for this is that surfactant layers are formed around the 
droplets whose surface viscosity is different from the bulk viscosity of the liquids inside 
and outside them (see [i] and references in that review to the primary sources). Here we 
give another explanation based on [2], namely droplet fall in surfactant solutions. 

Consider a droplet in a flowing liquid containing a dissolved surfactant, which is ad- 
sorbed on it and thus reduces the surface tension. The convective surfactant flow alters 
the concentration at the surface, so the interfacial tension varies over the surface, and 
tangential capillary stresses arise that entrain the liquid on both sides in the additional 
flows introduced by the droplet in the external flow. This increases the flow energy dissi- 
pation by comparison with no surfactant. This means that the effective viscosity is in- 
creased in a system containing many such droplets. 

Here we estimate the viscosity from such concepts, where for simplicity we assume that 
all the droplets are identical and the surface tension is sufficient to retain the spherical 
shape. 

The effective viscosity n for a suspension of identical spheres can be derived from 
many equivalent formulas [3-6]; for definiteness, we use the one given in [6]: 

3a3 
(B --'10)ei, = ~ P[r=J~ rinza+dr --  ~o,=a '[ (n'v+ q- n'v+) dr],, i, i, l =  x, g, z, ( l )  

where summation wi th  r e s p e c t  t o  the  r e p e a t i n g  s u b s c r i p t s  i s  unde r s tood .  

The integration is over some arbitrarily selected drop. To calculate the integrals in 
(i), one needs to know the stress o + and velocity v + of the flow at the outer boundary. In 
general, this involves considering many other particles, which is extremely complicated; the 
soundest study appears to be in [6]. To concentrate attention on principles, we consider a 
very dilute system, where each droplet can be considered in isolation. 
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In the quasistationary approximation, 
ture near any drop is defined by 

Vp + + ~ 0 A v + = O ,  d i v v + = O ,  r < ~ a ;  

d i v v * = O ,  r ~ a ;  v + - * - v ,  r - ~ o o ;  

v + = 0 ,  vn=O,  v + = v t ,  a + + g r a d J : a n ~ ,  

r : a ;  ~ + = 2 % e + ,  a * : 2 ~ , e * .  

and with inertial terms neglected, the flow struc- 

VP* -F ~hAv* = O, 

V* ~ oo, r ~ O ;  

- p + + ~ L  = --p*+~L, 
(2) 

Here v is the mean velocity of this mixture as a whole, with grad s ~ the tangential capil- 
lary stress at the droplet [2]; grad s is a surface gradient calculated in the same way as 
the usual one but for specified values of the radius vector here equal to the droplet radius 
a. In accordance with [2], we rewrite the expression for the capillary stress: 

0~ 
g m d ~ = - - g r a d ~ P .  ( 3 )  

0s  

Then ( 2 )  c a n  be  s o l v e d  i f  one  knows t h e  s u r f a c e  s u r f a c t a n t  c o n c e n t r a t i o n  r a t  t h e  d r o p -  
l e t  and how the interfacial tension T varies with P; r is determined by the adsorption and 
desorption conditions. For definiteness we assume that Langmuir's law applies and that the 
surface diffusion for the surfactant in the droplet can be neglected, as is commonly the 
case. 

Then the surfactant distribution near the drop is 

OC+ 
~ - ~ v + v C +  = DoAC+, r ~ a ;  

dt (4) 

OC+ , o 
- -  Do ~ -k ~ ( 1 - -  sP) C+ - -  ~P = div~Fv~, r = a; CT ~ C ,  r -+  oo, 

where div s is the surface-divergence operator, which is defined as usual for r ~ a. 

The first term on the left in the boundary condition in (4) is the usual diffusion flux, 
while the second and third terms are the amounts of surfactant adsorbed and desorbed by unit 
surface in unit time in accordance with Langmuir's law. On the right, we have the surface 
convective surfactant flux at the droplet [2]. 

From (2)-(4) one can in principle derive v + for a given mean v, equilibrium surfactant 
concentration C ~ in solution, and the parameters characterizing the viscosities of the dis- 
persed and dispersing liquids, the surfactant diffusion, and the adsorption and desorption. 

Grave mathematical difficulties arise in solving (2)-(4) exactly, and here we consider 
limiting cases, where the Peclet number Pe = va/Do is very small or very large. 

Small Peclet Numbers (Pe << i). We linearize (2)-(4) in Pe as 

i 'I-me C+=C~ s 1 6 3 1 7 6  C ~ s176 -CO, r ~ 

Then (3) becomes 

0T 
grad.  �9 - -  grad~ 7, ( 5 )  

o r  ~ 

with the relation between ~ and c 

and (4) becomes 

0p ~ 
7 - -  OC ~ c(a), ( 6 )  

OC, 
Oe _ DoAc ' r ~ a ;  - - D  o ~  @ M c - -  F ~ +, r = a ;  c- -~0,  r - -~oo ;  
0t ( 7 )  

0s ~ ~C ~ 
M - -  a c  o (~ § czsC ~ 4-  c~ ( I  - -  ss176 s 1 7 6  = 13 4 -  c~sC ~ 
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To determine q from (i), we assume that the drop is introduced into a pure shear flow 
defined as 

v=----ex; v v=-eg; vz=0, (8) 

where x, y, and z are cartesian coordinates in a system having its center within the drop, 
while Vx, Vy, and v z are the corresponding flow-rate coordinates. The final results are not 
affected by the form given for v in (8), but the calculations are much facilitated. 

We take a spherical coordinate system having its origin at the center of the drop and 
its polar axis along the z axis, the polar and azimuthal angles being e and ~. We write the 
components of v in (8) in this system in accordance with the usual rules [7] and solve (2) 
as 

1 v + = (A_2r -2 + A , 4 r  -4 + er) Y~, v-~ - -  A_4r -4 + er 

v~ = (Air  "l- A3r 3) Y~, vo = Air -I- A3r 8 go, (9) 

Y~ * , Y~ 
= - v+o = - v o  v - T '  

Yr ~ sin2 0 cos 2% Y0 = sin 0 cos 0 cos 2% Y, -- sin 0 sin 2% 

where hj  a r e  c o n s t a n t s  o f  i n t e g r a t i o n ,  which must  be d e r i v e d  f rom (2)  w i t h  (3 )  and ( 5 ) - ( 7 ) .  

F o u r i e r  t ime  t r a n s f o r m a t i o n s  can be u sed  in  s o l v i n g  ( 7 ) ,  so 8 / 8 t  i s  r e p l a c e d  by i~  
( i  = v / ~ ) .  We use  t h e  r e p r e s e n t a t i o n s  f o r  vo+,  v r  + in  (7 )  chosen  f rom (9)  and d e r i v e  c ( r )  
a s  

c ( r ) = G H 2 ( •  •  | / - i  
O) 

Do ' 

where G is a constant of integration and H 2 is a Hankel function of the first kind. 
derived from (7), and then (6) gives 

G is 

a* ( 2 ) 3r~ ar~ ax 
OF ~ ? = B q  e a - -  A_4a - 4  Y~, B =  - - ,  

a a c  ~ oF ~ ( io) 
h 

q = f = - - - - 2 ( •  h = H~(ua)a- ' /2 .  
Dof + Mh ' aa 

We substitute (i0) into (5) and then these with (9) into (2) to get A, 2 and A_~, which 
we use in (9) and (i) to get the effective viscosity as 

' 3 B ] 
n o + y  -i-6- q 

1 +  3 P ' 
~lo + ~ + -~- Br 

(11) 

where B and q are defined in (i0). If there is no adsorption (B = 0), (ii) becomes the 
classical Taylor formula. 

The (i0) definition for q shows that D is very much, dependent on m. To examine non- 
harmonicnonstationary processes, we write 

: 2he. (12) 

We substitute (ii) into (12) and use inverse Fourier transformations to get a compli- 
cated integrodifferential time-dependent relation between o and the shear rate e. Conse- 
quently, an emulsion in a surfactant solution has non-Newtonian behavior. 

The o-e relation simplifies substantially for slightly nonstationary processes, where 
~a2/D0 << i. We expand q from (ii) in powers of xa, as 

~ ~~ -{- T~io + T~ 12 (i~) 3/.2 -{- ...], (13)  
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T 7 Bq ) 
~~ 1-F 3 P ' 

~0 + ~1 + - ~  Bq ~ 

qo= = 0) = a(3Do+ 

(13) 

where qo is the stationary value for the effective viscosity for Pe << i, while the times T I 
and T 2 are readily derived from (i0) with (Ii) along with explicit expressions for the Hankel 
functions [7]. To abbreviate the formulas, T I and T 2 are not given explicitly, and we merely 
state that Tj ~ (a2/D0)9 as regards order of magnitude. We substitute (13) into (12) and 
use inverse Fourier transformations to get 

(t) ,-w 2~ ~ e (0 § T1 Oe (t) 2 dr' O2e (t') 
- 7 T -  + V- - -U VT-L---t' a, '= ' (14) 

It follows from (14) that the relation between ~ and e acquires a relaxation form and 
then an inherited one as the flow becomes more nonstationary. 

The physical reason for the time-dependent effects in (14) is that each e corresponds 
to a particular stationary distribution C+(r) near the drop; however, when e varies, this is 
attained not instantaneously but in a time of order a2/Do. 

We now estimate the characteristic times Tj in (14); Do ~ 10 -1~ m2/sec for many aqueous 
surfactant solutions, while Tj ~ (a2/D0)p implies that Tj ~ 10-z9 sec for an emulsion con- 
taining micron droplets. Therefore, relaxation effects-wiil occur for nonstationary process- 
es whose characteristic times are 10 -2 sec or less, which coincides with acoustic-wave per- 
iods. T. ~ i049 sec for millimeter drops, so relaxation effects should occur here With 
quite sl~w flows, whose characteristic times may be minutes or even hours. 

Large Peclet Numbers (Pc >> i). Here (4) cannot be linearized with respect to the 
velocity and there are major mathematical difficulties. Some methods have been developed 
[8], but the final results ae cumbersome and the analysis is extremely difficult. To obtain 
clear-cut formulas allowing physical analysis, we use a simple model for a diffusion boundary 
layer, in which each drop is taken as surrounded by a concentric layer, thickness 6 (6 << a), 
and outside it, i.e., for r > a + 6, one can neglect the diffusion term in the first equa- 
tion in (4), while within it (a < r < 6 + a), the velocity is taken as small and one can 
linearize with respect tO it. Also, we first consider stationary processes. 

It can be shown from the first equation in (4) that C + = C ~ for r > 6 +a. We expand 
C + and F in the second equation in (4) in powers of the small parameter vt+(a)a/D0, and in 
the linear approximation get 

{ c y .} v+(a)a  , a < r < ~ _ _ F a "  (15) 
C+:C~ F=F~ .CO, F ~ Do 

We use (9) and (15) in (4) on the basis that 6 << a, 8c/8r ~ -c/6 to get 

oF ~ aC ~ 
= e(a), F ~ = 

Y OC ~ + =sC ~ 

(16 )  

We use (15) and write grad s~ in (2) as in (5). We substitute (9) into (2) and use (5) 
and (16) to get v + near the drop. Then we use the standard method [3] to calculate a + and 
substitute for v + ando+ in (i), which gives a formula for the effective viscosity coinci- 
dent with (II) but with 

q _ , ( 1 7 )  
D o + M 6  

w h i l e  B i s  a s  i n  ( 1 0 ) .  

We have  t o  e s t i m a t e  6 t o  u s e  (11 )  and ( 1 7 ) ;  a r g u m e n t s  s i m i l a r  t o  t h o s e  i n  [2]  show t h a t  
f o r  Bq << no 

507 



Do "~,':" 

and for Bq >> no 

6 - (  (19) 
\ IIelI / 

where ~e~ is the root from the sum of the squares of the diagonal elements in tensor e 
written in terms of the principal axes. In general, 6 ~ ~e] -m, where 1/3 < m < i/2, but a 
separate study is needed to define 6(~e~) for arbitrary Bq/N0. 

We now substitute (17) into (ii) and further into (12) to get a formula relating the 
mean stress tensor g and shear rate e : 

6 =  2~o {1 -k- ~lo -t- 2.5[~h -t- BgHel l -~ (Do  + Mgllell-~) - l ]  p}e, 

no + n~ + Bg I lel I - m  (O o + M g  l tell-~) - ~ ( 2 0 ) 

1 1 
- - ~ <  tn < - - ,  

3 2 

where g is a coefficient of proportionality between 6 and ]e~ -m, which is estimated in 
(18) and (19) for the two limiting cases. Then the surfactant for Pe >> 1 produces non- 
Newtonian behavior different from that for Pe << i: there is a nonlinear relation between 
o and e .  

For  Pe << 1, t h e  r e l a t i o n  b e t w e e n  o and e in  (14)  i s  o f  r e l a x a t i o n  or  i n h e r i t e d  t y p e s ;  
i t  i s  r e a d i l y  shown t h a t  t h i s  f e a t u r e  d i s a p p e a r s  f o r  Pe >> 1. I f  we c o n s i d e r  (4 )  i n  t h e  
p r e v i o u s  b o u n d a r y - l a y e r  a p p r o x i m a t i o n ,  we s e e  t h a t  t h e r e  i s  a s o l u t i o n  C + = C ~ = c o n s t  i n  
t h e  r e g i o n  r > 6 + a f o r  any  v ( t ) ,  and t h e n  f rom (2)  and ( 4 )  we a g a i n  g e t  i n  s e q u e n c e  (16)  
and t h e n  (11)  and ( 1 7 ) .  I t  can  be shown t h a t  any  o t h e r  s o l u t i o n s  t o  t h e  f i r s t  e q u a t i o n  
in (4) derived on neglecting the diffusion part do not contribute to the integrals in (i), 
so increasing the flow speed eliminates time-dependent effects of (14) type. 

We can compare (ii), (13), and (20) with the theory in which the surfactant at the 
drop is incorporated by means of the empirical surface viscosity Ns" We use (IV.221) from 
[i], which can be written as 

~1o + -~- (]]~ + ~lJa) 

~1 = ~1o 1 "-~ ]]0 "~ ]]1 .d[_ ]],/a 9 �9 

This coincides formally with (ii) if 3Bq/10 is replaced by Bs/a. However, while in 
[i] and similar papers, ns was taken as constant and derived empirically, (ii), (13), and 
(20) have been derived from first principles and not merely establish the relation of Bq 
to surfactant diffusion and adsorption, as well as droplet size, but also indicate that the 
effective viscosity is dependent on the flow frequency and velocity. 

Equations (ii) and (20) imply that for Bq/~ 0 ~ ~, which is so for sufficiently large F, 
the effective viscosity tends to 

]] = ]]o(1 -t- 2,59), (21)  

which coincides with that for a dilute suspension of hard spheresderived from Einstein's 
formula. Droplet solidification at high surfactant surface concentrations occurs [i] and 
has been ascribed to elevated surface viscosities. In our model, this is explained as fol- 
lows. It follows from (5) and (I0) that the surface capillary stress preventing the drop 
from being deformed by the flow is of the order of Bqeij. The order of the hydrodynamic 
stress in the carrying liquid is q0eij, so the external flow cannot deform the drop for Bq >> 
~0 and thus excite circulating flows within it. The drop exerts an effect on the flow the 
same as for a hard sphere having the same radius. Therefore, the viscosity of an emulsion 
for Bq/q0 + ~ is the same as that of a hard-sphere suspension having the same p. 

The largest change in effective viscosity will occur in a system in which the viscosity 
in the drop is much less than that of the dispersing liquid. We compare the limiting situ- 
ations in (ii) where ~l << N0, Bq = 0 (surfactant absent), which leads to N = n0(l + p), with 
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(21), which applies for Bq/~0 + ~ (surfactant concentration at drop large), which shows 
that (q - N0)/N0 can increase by a factor 2.5p as the surfactant concentration increases. 
A drop behaves as a hard sphere in a concentrated surfactant solution, as is familiar from 
the experiments discussed in [2]. 

The derivative 3T/SF ~ appearing in the expression for B in (ii) is readily derived 
from thermodynamic arguments [2, 9] as 

a~ F ~ #C ~ 
RT-- 

0p ~ C ~ 0p o 

where R and T are the universal gas constant and the absolute temperature, while the F ~ de- 
pendence of C ~ can be derived from (7) and (16). 

NOTATION 

a , droplet radius; C ~ , equilibrium surfactant concentration in solution; C +, surfactant 
concentration near drop; c = C + - CO; Do, surfactant diffusion coefficient in main liquid; 
e and eij, shear flow velocity tensor and component of this; M, defined in (7); ni, compon- 
ent of unit normal to droplet surface; p, pressure; q, defined in (i0) and (17); r, radius 
vector with origin at droplet center; s, proportion of droplet surface occupied by one sur- 
factant molecule; v , flow speed; t, time; Yr, Y@, and Y~, defined in (9); ~ and ~, sorption 
and desorption constants; F, surface surfactant concentration on drop; F ~ equilibrium F; 
u = F - F~ 6, boundary-layer thickness; N, viscosity; p, volume droplet concentration; 
and oij, hydrodynamic-stress tensor and component of this; T, droplet surface tension; 9, 
Fourier frequency. Superscripts and subscripts: 0 and i, main and dispersed liquids; n 
and t, normal and tangential components for vectors and tensors at droplet surface; + and 
~, quantities inside and outside droplet; and a , e , v , and ~, without subscripts or super- 
scripts refer to the mixture as a whole. 
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